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The pressures in the liquid core and the breaking stresses in vessel walls developing in symmetric freezing of
water in spherically and cylindrically shaped bottles are calculated. It is shown that at surface temperatures
of the bottle above −20oC the water in it freezes only partially; at lower temperatures, the pressure in the
liquid core attains a maximum value of about 2000 atm, which is preserved until the water freezes com-
pletely.

One simple and convenient means of creating high pressures is the ice-bomb method, in which use is made
of the effect of abnormal expansion of water in crystallization and its attendant increase in the pressure accompanying
the freezing of water in closed vessels. The method was proposed for the first time in 1944 by B. G. Lazarev and A.
S. Kan for obtaining high pressures at low temperatures and investigating the influence of such pressures on the tran-
sition of certain substances to a superconducting state; a detailed description of a modified version of this method is
given [1]. Subsequently, the ice-bomb method has been applied by different authors to the study of galvanomagnetic
effects in nonsuperconducting materials at low temperatures. It is believed that this method is convenient for obtaining
pressures up to 2000 atm at low temperatures without using standard high-pressure equipment [2]. However, as far as
we know, its possibilities for obtaining higher pressures have not yet been investigated.

This work seeks to calculate strains and stresses developing in the case of symmetric freezing of water in
tightly plugged bottles of spherical and cylindrical shapes and to evaluate the maximum pressures which can be ob-
tained in a liquid core using the ice-bomb method.

Freezing of Water in Spherically Shaped Bottles. Let us assume that a bottle having a spherical shape is
filled with water and is solidly plugged; at the instant of time t = 0, symmetric freezing of water begins and the crys-
tallization front moves to the center of the sphere. The process of freezing of water is accompanied by an increase in
the volume occupied with water and ice, which leads to a continuous increase in the pressure in the liquid core and
to the development of stresses and strains in vessel walls which are due to the phase transformations of the water into
ice. The problem is reduced to the calculation of them as functions of the radius of the crystallization front of water,
which is determined by solution of the Stefan problem. In the particular case of practical importance where the tem-
perature of the surface of the bottle in which water freezing occurs is maintained constant all the time, one can obtain
an approximate solution of this problem using the quasistationary method. Since the process of crystallization of water
in the bottle is slow, nearly equilibrium temperature fields are established in the bulk of its walls and in the ice shell:

T1 = 
C1

r
 + C2 ,   T2 = 

C3
r

 + C4 ,

where C1–C4 are the arbitrary constants which must be found from the following boundary conditions: the temperature
on the bottle surface is Ts = const, i.e., T2(R2) = Ts; on the interior bottle surface, the conditions of continuity of the
temperature and the heat flux

T1 (R1) = T2 (R1) ,   λ1 
dT1 (R1)

dr
 = λ2 

dT2 (R1)
dr

 .
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must be fulfilled. From these conditions we obtain

C1 = 
T0(ξ) − Ts

1
ξ

 − 
1
R1

 + 
λ1

λ2
 


1
R1

 − 
1
R2





 ,   C2 = T0(ξ) − C1 .

On the crystallization front of the liquid, the temperature T1(ξ) = T0, where T0 is the temperature of stable
equilibrium of the ice–water phases. Furthermore, the Stefan condition must be fulfilled, which, at comparatively low
pressures (of the order of tens of atmospheres), is written in the form

λ1 
dT1

dr


 r=ξ

 = ρL 
dξ
dt

 .

In the spherical coordinate system with the origin at the center of the sphere, the strain u is directed along
the radius and is a function of only r and ξ. The components of the strain tensor εr, εθ, and εϕ are related to the
displacement u(r) by the formulas

εr = 
du
dr

 ,   εθ = εϕ = 
u
r

 . (1)

In what follows, we will consider only the case where the stresses and strains in solid shells are related by
the Hooke law. Then the radial and tangential components of the stress tensor are expressed in terms of the displace-
ment u(r) by the relations [3]

σr = 
E

(1 + ν) (1 − 2ν)
 

(1 − ν) du

dr
 + 2ν 

u
r



 , (2)

σθ = 
E

(1 + ν) (1 − 2ν)
 

ν 

du
dr

 + 
u
r



 . (3)

The equilibrium equation is written in the form

dσr

dr
 + 

2

r
 (σr + σθ) = 0 ,

and with account for (2) and (3) we obtain

u = ar + 
b

r
2 . (4)

The components of the stress tensor σr and σθ are expressed in terms of a and b by the formulas

σr = 
E

(1 + ν) (1 − 2ν)
 

(1 + ν) a − 2 (1 − 2ν) b

r
3



 , (5)

σθ = 
E

(1 + ν) (1 − 2ν)
 

(1 + ν) a + (1 − 2ν) b

r
3



 . (6)

We now apply relations (2)–(6) to a system consisting of a liquid core and a two-layer solid shell, one of
which is formed by ice, while the other is formed by the vessel walls.
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Let, at a certain instant of time, the crystallization front of the liquid determined by the coordinate r = ξ
move to an infinitely small distance dξ. Additional small displacements due to the increase in the volume of an infi-
nitely thin crystallized ice layer occur in both the liquid core and the solid compound shell. Equality (4) for each me-
dium is

δu (r) = δar + δb 
1
r
 ,   0 ≤ r < ξ ; (7)

δu1 (r) = δa1r + δb1 
1
r

 ,   ξ < r < R1 ; (8)

δu2 (r) = δa2r + δb2 
1
r

 ,   R1 < r < R2 . (9)

We note that condition (8) loses its meaning when ξ → 0, since ξ and dξ become quantities of the same order of
smallness. Therefore, all the solutions which will be obtained below lose their meaning at the instant of disappearance
of the liquid phase. To determine arbitrary constants one must formulate the boundary conditions.

When r = 0, the displacement in the liquid core must remain finite; hence, we must set δb = 0 in equality
(7). On the bottle surface, the radial component of the stress is equal to zero, i.e., σr2(R2) = 0. By virtue of this so-
lution, equality (5) takes the form

(1 + ν2) δa2 − 2 (1 − 2ν2) 
δb2

R2
3  = 0 . (10)

We now formulate the conjugation conditions at contact boundaries.
In crystallization of a water layer of thickness dξ, the volume of the system increases by 4πξ2βdξ. Thus, an

additional volume is rammed as it were between the liquid layer and the ice layer, as a result of which the liquid par-
ticles near the phase boundary produce radial displacements into the liquid core while the ice particles produce dis-
placements in the opposite direction. This means that the displacements of the liquid and the ice undergo a
discontinuity on the crystallization front. They are related by the relation

δu1 (ξ) − δu2 (ξ) = βdξ ;

with account for (7) and (8), it can be written in the form

δa1 + 
δb1

ξ3
 − δa = − β 

dξ

ξ
 . (11)

The second condition which must be fulfilled at the water–ice phase boundary follows from the equality of
the pressures on both sides of this boundary:

δp = − δσr (ξ) .

Taking account of the fact that the change in the pressure δp in the liquid core is related to the relative
change in the volume div (δu) by the relation 

δp = − 
1
K

 div (δ u) = − 
3δa
K

 ,

we can write this condition as
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(1 + ν1) δa1 − 2 (1 − 2ν1) 
δb1

ξ3  = 
3 (1 + ν1) (1 − 2ν1)

KE1

 δa1 . (12)

At the contact boundary between the ice and the interior bottle wall, the displacements and the pressures are
continuous: δu1(R1) = δu2(R1) and δσ1(R1) = δσ2(R1), which leads to the following relations:

δa1 + 
1

R1
3 δb1 − δa2 

1

R1
3 δb3 = 0 , (13)

δa1 − 2 
1 − 2ν1

1 + ν2

 
δb1

R1
3

 − 
E2

E1

 
1 − 2ν1

1 − 2ν2

 δa2 + 
2E1

E2

 
1 − 2ν1

1 + ν2

 
δb2

R1
3  = 0 . (14)

Thus, to determine six arbitrary constants we have the linear algebraic system of equations (10)–(14) in which
only one equation (11) is inhomogeneous. Solving this system according to the Cramer formula, we obtain

δu = 
β
3

 
n − mz

A1n + B1mz
 
dz
z

 r ,   0 ≤ r ≤ ξ ;

δu1 = − β 
m

KE1

 



(1 − 2ν1) r + (1 + ν1) 

R1
3

2r
2




 

dz

A1n − B1mz
 ,   ξ ≤ r ≤ R1 ;

δu2 = − β 
3 (1 − ν1)

KE1 (1 + ν2)
 
R1

3

R2
3 



(1 − 2ν2) r + (1 + ν2) 

R2
3

2r
2




 

dz

A1n − B1mz
 ,   R1 ≤ r ≤ R2 ;

where

A1 = 1 + 
3 (1 + ν1)

2KE1
 ;   B1 = 1 − 

3 (1 − 2ν1)
KE1

 ;   z = 
ξ3

R1
3 ;   m = 1 + 

1 + ν1

1 + ν2

 
E2

E1

 
R1

3

R2
3 + 

2 (1 − 2ν2)
1 + ν2

 
R1

3

R2
3
 − 

E2

E1

 
1 + ν1

1 + ν2

 ;

n = 1 + 2 
1 − 2ν1

1 + ν2

 
E2

E1

 






1 − 

R1
3

R2
3







 + 2 

1 − 2ν2

1 + ν2

 
R1

3

R2
3 .

Integrating these expressions from z = 1 to z = ξ3 ⁄ R1
2, we find the total displacements produced by all the

points of the system over the entire period of motion of the crystallization front from the interior bottle wall to r = ξ:

u (r) = 
β

3A1
 









 ln 
ξ3

R1
3
 + 

9 (1 − ν1) 
KE1

KE1 − 3 (1 − 2ν1)
ln M

2KE1 + 3 (1 + ν1)









  r ,   0 ≤ r ≤ ξ ; (15)

u1 (r) = 
βM

KE1 − 3 (1 − 2ν1)
 



(1 − 2ν1) r + (1 + ν1) 

R1
3

2r
2




 ,   ξ ≤ r ≤ R1 ; (16)

u2 (r) = 
3β (1 − ν1) M

m (1 + ν2) [KE1 − 3 (1 − 2ν1)]
 
R1

3

R2
3 



(1 − 2ν1) r + (1 + ν2) 

R2
3

2r
2




 ,   R1 ≤ r ≤ R2 ; (17)
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where

M = ln 
A1n − B1mz

A1n − B1m
 . (18)

For the pressure in the liquid core we have the formula

p = − 
β

3KA1
 



ln z + 

9 (1 − ν1)
2KE1 + 3 (1 + ν1)

 
KE1

KE1 − 3 (1 − 2ν1)
ln M




 . (19)

From equalities (5) and (6) with account for (16) and (17) we obtain the components of the stress tensors:

σr1 = 
βM

KE1 − 3 (1 − 2ν1)
 



1 − 2ν1 − (1 + ν1) 

R1
3

r
3




 ,   ξ ≤ r ≤ R1 ;

σθ1 = 
βM

KE1 − 3 (1 − 2ν1)
 



1 − 2ν1 + (1 + ν1) 

R1
3

2r
3




 ,   ξ ≤ r ≤ R1 ;

(20)

σr2 = 
3βM (1 − ν1)

m (1 + ν2) [KE1 − 3 (1 − 2ν1)]
 
R1

3

R2
3 



1 − 2ν2 − (1 + ν2) 

R2
3

r
3




 ,   R1 ≤ r ≤ R2 ;

σθ2 = 
3βM (1 − ν1)

m (1 + ν2) [KE1 − 3 (1 − 2ν1)]
 
R1

3

R2
3 



1 − 2ν2 + (1 + ν2) 

R2
3

2r
3




 ,   R1 ≤ r ≤ R2 .

(21)

Formulas (16)–(21) solve the problem posed. They enable one to calculate the pressure in the liquid core and
the stresses and strains developing in the walls of a spherically shaped bottle in the process of freezing of water in it.

Upon substitution of the corresponding values of the parameters into (18), it acquires a cumbersome form;
however it can be substantially simplified when ξ ⁄ R1 > 0.5.

The evaluations show that the expression under the logarithm in (18) differs little from unity; therefore, we
can use the expansion

ln x = x − 1 − 
(x − 1)2

2
 − 
(x − 1)3

3
 − ... ,

which is observed when 0 < x ≤ 2. Having restricted ourselves to the first term, we obtain

M C − 
B1m

A1n − B1m
 






1 − 

ξ3

R1
3







 .

In the same approximation, we can write

ln 
ξ3

R
3 C − 1 + 

ξ3

R1
3 .

Then (15)–(17) in the first approximation take the form
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u (r) = − 
β
3

 r 



















1 − 

R1
3

R2
3







 






1 − 

ξ3

R1
3








A2 − B2 
R1

3

R2
3

 + 
1

2A1

 











1 + 
E1

E2

 
m

2
B1 (1 + ν2)

2

KE2 (1 − ν1) 






A2 − B2 

R1
3

R2
3








 






1 − 

ξ3

R1
3































 ,   0 ≤ r ≤ ξ ;

u1 (r) = 
βm (1 + ν2)

3KE2 (1 − ν1) 






A2 − B2 

R1
3

R2
3








 



(1 − 2ν1) r + (1 + ν1) 

R1
3

2r
2




 






1 − 

ξ3

R1
3







 ,   ξ ≤ r ≤ R1 ;

u2 (r) = 
β

KE2 






A2 − B2 

R1
3

R2
3








 
R1

3

R2
3 



(1 − 2ν2) r + (1 + ν2) 

R2
3

2r
2




 






1 − 

ξ3

R1
3







 ,   R1 ≤ r ≤ R2 ;

where

A2 = 1 + 
3 (1 + ν2)

2KE2
 ;   B2 = 1 − 

3 (1 − 2ν2)
KE2

 .

For the corresponding components of the stress tensor we obtain the following expressions:

σr1 = 
βE1 (1 + ν2)

3KE2 (1 − ν1) 






A2 − B2 

R1
3

R2
3








 






1 − 

ξ3

R1
3







 



1 − 

R1
3

r
3




 ,   ξ ≤ r ≤ R1 ;

σθ1 = 
βE1 (1 + ν2)

3KE2 (1 − ν1) 






A2 − B2 

R1
3

R2
3








 






1 − 

ξ3

R1
3







 



1 + 

R1
3

2r
3




 ,   ξ ≤ r ≤ R1 ;

σr2 = 
β

K 






A2 − B2 

R1
3

R2
3








 
R1

3

R2
3 






1 − 

ξ3

R1
3







 



1 − 

R2
3

r
3




 ,   R1 ≤ r ≤ R2 ;

σθ2 = 
β

K 






A2 − B2 

R1
3

R2
3








 
R1

3

R2
3
 






1 − 

ξ3

R1
3







 



1 + 

R2
3

2r
3




 ,   R1 ≤ r ≤ R2 .

(22)

The breaking stresses σθ2 on the bottle surface increase in the process of freezing of water. If the ultimate
tensile strength of the material from which the bottle is manufactured is attained, the material fails. We find the
threshold value of the radius of the crystallization front of the liquid ξt at which the exterior surface of the bottle will
be broken from the last formula of equalities (22), having set r = R2 and σθ2 = σcr in it. We will have
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ξt = R1 
3√ 1 − 

2Kσcr

3β
 







R2
3

R1
3
 A2 − B2








 . (23)

The exterior bottle surface will be broken only when the radicand in (23) is positive. If it is less than zero,
this will mean that the process of freezing of water in the bottle will be completed without its breaking.

Thus, the condition under which the freezing of water in a spherically shaped bottle cannot lead to its break-
ing can be written in the form

R2
R1

 ≥ 
3√1

A2
 



B2 + 

3β
2Kσcr





 . (24)

Freezing of Water in Cylindrically Shaped Bottles. In this case, just as above, the radial displacements are
determined by formula (4) while the normal and tangential stresses are expressed in terms of the coefficients a and b
as

σr = 
E

1 − ν2 

(1 + ν) a − (1 − ν) b

r
2



 ,   σθ = 

E

1 − ν2 

(1 + ν) a − (1 − ν) b

r
2



 .

The strains which develop in the bottle in symmetric displacement of the crystallization front of water to the
cylinder axis are computed in just the same manner as in the case of the freezing of water in a spherically shaped
bottle. The radial displacements are related to ξ in the following manner:

u (r) = 
β

A
′
 






ln 
ξ2

R1
2 + 

4 (1 − ν1)

KE1 − 2 (1 − ν1)
 M
′





 r ,   0 ≤ r ≤ ξ ;

u1 (r) = 
βM

′

KE1B
′
m′

 






(1 − ν1) r + (1 + ν1) 

m′R1
2

r







 ,   ξ ≤ r ≤ R1 ;

u2 (r) = 
2β (1 − ν2) M

′

KE1B
′
m′

 
R1

2

R2
2 



(1 − ν2)r + (1 + ν2) 

R2
2

r




 ,   R1 ≤ r ≤ R2 ;

M
′
 = ln 

A
′
n′ − B

′
m′ 
ξ2

R1
2

A
′
n′ − B

′
m′

 ,   A
′
 = 1 + 

2 (1 + ν1)

KE1

 ,   B
′
 = 1 − 

2 (1 − ν1)

KE1

 ,

m′ = 1 + 
1 − ν2

1 + ν2

 
R1

2

R2
2
 − 

1 + ν1

1 + ν2

 
E2

E1

 






1 − 

R1
2

R2
2







 ,    n′ = 1 + 

1 − ν2

1 + ν2

 
R1

2

R2
2
 + 

1 + ν1

1 + ν2

 
E2

E1

 






1 − 

R1
2

R2
2







 .

For the pressure in the liquid core we obtain

p = − 
β

KA
′
 






ln 
ξ2

R1
2
 + 




A
′

B
′
 − 1




 M
′





 ; (25)

and for the components of the stress tensor we have
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σr1 = 
βM

′

KB
′
m′

 



1 − 

R1
2

r
2




 ,   σθ1 = 

βM
′

KB
′
m′

 



1 + 

R1
2

r
2




 ,   ξ ≤ r ≤ R1 ,

σr2 = 
2βE2M

′

KB
′
m′E1 (1 + ν2)

 







R1
2

R2
2 − 

R1
2

r
2







 ,    σθ2 = 

2βE2M
′

KB
′
m′E1 (1 + ν2)

 







R1
2

R2
2 + 

R1
2

r
2







 ,   R1 ≤ r ≤ R2 .

The radius of the crystallization front of the liquid ξt at which the exterior bottle surface will be broken is
determined from the transcendental equation

KE1σcrB
′
m′ (1 + ν2)

4βE2

 
R2

2

R1
2 = ln 

A
′
n′ − B

′
m′ 
ξt

2

R1
2

A
′
n′ − B

′
m′

 .
(26)

Hence, restricting ourselves to the first term in the expansion of the logarithm on the right-hand side of the equality,
we obtain the approximate formula

ξt C R1 






1 − 

E1

4βE2

 
R2

2

R1
2 Kσcr (1 + ν2) (A

′
n′ − B

′
m′)







1 ⁄ 2

 . (27)

Just as above, the condition that the bottle will explode for none of the values of ξt in the process of crys-
tallization of water can be written in the form

R2
R1

 ≥ 2 √βE2

KE1σcr (1 + ν2) (A
′
n′ − B

′
m′)

 .

Substituting here the values of A′, B′, m′, and n′, we find

R2
R1

 > 













1 + 
2β

Kσcr
 − 

2 (1 − ν1) (1 − ν2)
KE2

1 + 
2 (1 − ν1) (1 + ν2)

KE2













1 ⁄ 2

 .
(28)

Expression (28) can be employed, in particular, to evaluate the thickness of sewer pipes for which the freez-
ing of water in them will not lead to their breaking.

From formulas (19) and (25) it is clear that the pressure in the liquid core increases infinitely when ξ ⁄ R1 =>
0, which is a consequence of the assumption of the constancy and positiveness of the coefficient β at all pressures.
However, such an assumption is contradictory to the water–ice phase diagram.

TABLE 1. Phase Diagram Water–Ice I

Solid phase Pressure, atm Equilibrium temperature, oC ∆V = Vw − Vice, cm3/mole

Ice I

1 0 –1.62

610 –5 –1.83

1130 –10 –2.02

1590 –15 –2.195

1970 –20 –2.195
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As is well known, depending on the pressure, the liquid core can be in stable equilibrium only with certain
polymorphic modifications of ice, denoted by I, III, IV, and VI in order of decrease in the pressure. Table 1 gives the
relationship between the pressure, the melting temperature, and the change in the water volume in the case of equilib-
rium of water and ice I [4].

Further increase in the pressure leads to the appearance of successively ice III, IV, and VI. In all of these
three modifications of ice, ∆V > 0, i.e., at p > 1970 atm, the crystallization of water is accompanied by a decrease in
the volume. It follows that, when the pressure in the liquid core attains its critical value pcr = 1970 atm, which cor-
responds to the critical radius of the crystallization front ξcr, further decrease in ξ cannot lead to an increase in the
pressure in the liquid core: as soon as a certain portion of water is crystallized, the pressure in the bottle decreases;
the equilibrium temperature turns back to its critical value θcr = –20oC, and the pressure turns back to pcr. Thus, once
the radius of the crystallization front attains its critical value, further freezing of water occurs at constant pressure in
the liquid core and at a constant negative temperature of the ice–water equilibrium of −29oC. This fact introduced sub-
stantial corrections into the formulas (19) and (25) obtained above, which hold only as long as the crystallization-front
radius is larger than ξcr; with further freezing of water, the pressure p in the liquid core remains equal to pcr all the
time.

Setting σr1 = −pcr in the first formula of (22), we find the critical value of the radius of the crystallization
front:

ξcr = R1 




1 + 

pcr

2γ
 − √



1 + 

pcr

2γ




2
 − 1  




 , (29)

where

γ = 
βE1 (1 + ν1)

3KE2 (1 − ν1) 






A2 − B2 

R1
3

R2
3








 .

The crystallization of water in a spherically shaped bottle can lead to its breaking only when the value of ξt
determined by formula (23) is higher than ξcr.

In the case of crystallization of water in cylindrically shaped bottles, instead of formula (29) we obtain

ξcr = R1 √1 − 
pcrKA′

β
 

A′n′ − B′m′

A
′
n′ − B

′
m′ − γ′B′m′

 ,

TABLE 2. Elastic and Strength Characteristics of Materials from Which the Bottles Are Manufactured and the Limiting Values
of the R1 ⁄ R2 Ratio Keeping the Bottles from Exploding in Complete Freezing of the Water Filling Them

Material E⋅10−10, Pa ν σcr⋅10−7, Pa
R2

 ⁄ R1

spherical bottle cylindrical bottle
12Kh2N4A steel 19.5 0.23 125.6 1.11 1.248
2Kh13 steel 19.5–20.6 0.23–0.31 68.6 1.208 1.439
Copper alloy: Br. OTsS 6-6-3
(permanent-mold casting) Cu:
   5.0–6.0 % Sn
   5.0–7.0 % Zn
   4.0–6.0 % Pb

9.18 0.23 18.4–25.5 1.56 1.95

STE′R-1-30 glass-cloth-based laminate 2.45 0.3 29.4 1.262 1.723

PTFE-3 9.8–12.7 0.3 2.9–3.9 2.78 4.616
Cast iron 1 0.3 1.5 3.43 5.58
Annealed aluminum 6.85 0.35–0.36 8.96–10.75 1.878 2.74
Ice 1 0.3
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where

γ′ = 
4 (1 − ν1)

KE1 − 2 (1 − ν1)
 .

Table 2 gives the elastic and strength characteristics of a number of materials taken from [5] and the limiting
ratios of the radii R2

 ⁄ R1 calculated from formulas (23) and (28), beginning with which the complete freezing of water
in spherically and cylindrically shaped bottles (manufactured from the above materials) will occur without breaking of
the bottles.

It is clear from the table that in freezing of water in bottles with the same wall thickness and manufactured
from the same materials, the bottles having a cylindrical shape are broken earlier.

Table 3 gives the pressures (calculated from formulas (19) and (25)) in the liquid core for different radii of
the crystallization front of the liquid in the cases of the freezing of water in spherically and cylindrically shaped bot-
tles manufactured from 12Kh2N4A high-strength steel. The calculations were carried out for two different thicknesses
of the bottle walls.

When the dependence of the temperature of the ice–water phase equilibrium on the pressure is taken into ac-
count the equation of heat balance on the crystallization front, i.e., the Stefan condition, changes substantially. In the
case of the crystallization of water in the spherically shaped bottle it takes the form

dQ
dt

 − 4πξ2λ1 
dT
dr


 r−ξ

 = 4πξ2ρL1 
dξ
dt

 ,

where Q = 
4
3

 πρc[273 − T0(ξ)] ξ
3 is the quantity of heat in the liquid core.

From the data of Table 1 it is clear that the relationship between the pressure and the temperature in ice–
water phase equilibrium in the region of pressures to pcr C 2000 atm can be approximated by the linear function

T0(ξ) = 273 − αp , (30)

where α = 0.01 deg/atm and p is measured in atmospheres.
Thus, the quantity Q(ξ) can be represented in the form

Q = 
4
3 
πρcαpξ3

 ;

then we obtain

TABLE 3. Pressure in the Liquid Core for Different Radii of the Crystallization Front of Water (bottles made of 12Kh2N24
high-strength steel)

No. ξ ⁄ R1

p, MPa

spherical bottle cylindrical bottle

R2
 ⁄ R1 = 1.2 R2

 ⁄ R1 = 1.28 R2
 ⁄ R1 = 1.289 R2

 ⁄ R1 = 1.4

1 0.9 93 81 68 68

2 0.85 124 123 104 105

3 0.8 169 168 141 143

4 0.77 197 197 164 167

5 0.76 207 206 172 175

6 0.75 – – 180 183

7 0.73 – – 196 200

8 0.72 – – 201 –
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dQ
dt

 = 4πρcαξ2
 

p + 

1
3

 ξ 
dp
dξ



 
dξ
dt

 . (31)

Having substituted the value of 
dT
dr


 r=ξ

 and (31) into Eq. (3), we will have

dξ
dt

 = 
λ1R1 [T0(ξ) − Ts]

ρL1ξ
2
 



1 − 

R1

ξ
 − 
λ1

λ2
 



1 − 

R1

R2








 



1 − 

cα
L

 

p + 

1
3

 ξ dp
dξ








 , (32)

where p(ξ) is found from formula (19). The equation obtained determines the motion of the crystallization front of
water only as long as the pressure in the liquid core is lower than the critical pressure.

The thickness of the ice layer h formed is found from the condition of vanishing of the crystallization-front
velocity:

T0(ξ) − Ts = 0 ,

which can be written in the form

θ s  = αp(ξ) ,

where θs is the surface temperature of the bottle in oC. Hence we obtain

h(θs) = R1 




θ s
αD

 − √


1 + 

θ s
αD





 2

 − 1



 ,

where

D = 
2βE1 (1 + ν2)

3KE2 (1 − ν1) 






A2 − B2 

R1
3

R2
3








 .

When θs < −20oC, the water in the bottle freezes completely. The law of displacement of the crystallization
front upon reaching the critical radius is also determined by Eq. (32), in which the pressure is now considered to be
constant and equal to pcr while the initial condition is specified in the form ξ t=0 = ξcr. The equation is easily inte-
grated.

Analogously we solve the problem on freezing of water in cylindrically shaped bottles.
Thus, in the case of the freezing of water in closed thick-walled metallic bottles, a number of features arise

which are related to the polymorphic modifications of ice with increase in the pressure. One of the most important
features is the constancy of the pressure in the liquid core upon reaching of the critical radius ξcr by the crystallization
front, which results in the disappearance of the known acoustic effect of crystallization of water related to the density
change in phase transformations of substances [6].

The above calculations also yield that the maximum pressures which can be obtained in freezing of water in
thick-walled bottles manufactured from high-strength steels are about 2000 atm irrespective of the bottle shape, which
is in complete agreement with the data of [1].

NOTATION

T1, T2, and Ts, temperature of the ice shell of the walls of the bottle and its surface respectively, oC; t, time,
sec; R1 and R2, internal and external radii of the bottle, cm; ξ, radius of the crystallization front of water, cm; λ1 and
λ2, thermal conductivities of ice and the material of the bottle walls, J/(m⋅sec⋅deg); ρ, density of water, kg/m3; L, spe-
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cific heat of freezing of water, J/kg; τ, time of complete freezing of water in the bottle, min; r, θ, ϕ, spherical coor-
dinates; u, displacement vector, cm; εr, εθ, and εϕ, components of the strain tensor; σr, σθ, and σϕ, components of the
stress tensor; K, compressibility coefficient of water; E, Young modulus of the materials, Pa; E1, Young modulus of
ice, Pa; E2, Young modulus of the material of the bottle walls, Pa; ν, Poisson coefficient; ν1 and ν2, Poisson coeffi-
cients of ice and of the bottle-wall material respectively; a and b, arbitrary constants; u1(r) and u2(r), displacements of
the points of ice and the bottle, cm; δa, δa1, δa2, δb, δb1, and δb2, infinitely small arbitrary constants; β, coefficient
of volumetric expansion of water in its freezing; K, compressibility coefficient of water, Pa−1; p, pressure in the liquid
core, Pa; ξt, value of the radius of the crystallization front of water for which the bottle is broken; δcr, breaking (ten-
sile) strength of the wall material, Pa; pcr, critical pressure, Pa; ξcr, critical radius of the crystallization front of water;
c, heat capacity of water, J/(kg⋅K); Ts, surface temperature of the bottle, K; T0, temperature of the ice–water phase
equilibrium, K; h, thickness of the ice layer. Subscripts: t, break; cr, critical; s, surface; r, θ, ϕ, spherical coordinates;
w, water; ice, ice.
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